### Crypto

# Cryptocurrency Bitcoin Imaginary Numbers May Be Essential for Describing Reality

Mathematicians were disturbed, centuries ago, to find that calculating the properties of certain curves demanded the seemingly impossible: numbers that, when multiplied by themselves, turn negative. All the numbers on the number line, when squared, yield a positive number; 22 = 4, and (-2)2 = 4. Mathematicians started calling those familiar numbers “real” and the…

Cryptocurrency Bitcoin

Mathematicians were disturbed, centuries ago, to find that calculating the properties of certain curves demanded the seemingly impossible: numbers that, when multiplied by themselves, turn negative.

All the numbers on the number line, when squared, yield a positive number; 2^{2} = 4, and (-2)^{2} = 4. Mathematicians started calling those familiar numbers “real” and the apparently impossible breed of numbers “imaginary.”

Imaginary numbers, labeled with units of *i* (where, for instance, (2*i*)^{2} = -4), gradually became fixtures in the abstract realm of mathematics. For physicists, however, real numbers sufficed to quantify reality. Sometimes, so-called complex numbers, with both real and imaginary parts, such as 2 3*i*, have streamlined calculations, but in apparently optional ways. No instrument has ever returned a reading with an *i*.

Yet physicists may have just shown for the first time that imaginary numbers are, in a sense, real.

A group of quantum theorists designed an experiment whose outcome depends on whether nature has an imaginary side. Provided that quantum mechanics is correct—an assumption few would quibble with—the team’s argument essentially guarantees that complex numbers are an unavoidable part of our description of the physical universe.

“These complex numbers, usually they’re just a convenient tool, but here it turns out that they really have some physical meaning,” said Tamás Vértesi, a physicist at the Institute for Nuclear Research at the Hungarian Academy of Sciences who, years ago, argued the opposite. “The world is such that it really requires these complex” numbers, he said.

In quantum mechanics, the behavior of a particle or group of particles is encapsulated by a wavelike entity known as the wave function, or *ψ*. The wave function forecasts possible outcomes of measurements, such as an electron’s possible position or momentum. The so-called Schrödinger equation describes how the wave function changes in time—and this equation features an *i*.

Physicists have never been entirely sure what to make of this. When Erwin Schrödinger derived the equation that now bears his name, he hoped to scrub the *i* out. “What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers,” he wrote to Hendrik Lorentz in 1926. “*ψ* is surely a fundamentally real function.”

Schrödinger’s desire was certainly plausible from a mathematical perspective: Any property of complex numbers can be captured by combinations of real numbers plus new rules to keep them in line, opening up the mathematical possibility of an all-real version of quantum mechanics.

Indeed, the translation proved simple enough that Schrödinger almost immediately discovered what he believed to be the “true wave equation,” one that eschewed *i*. “Another heavy stone has been rolled away from my heart,” he wrote to Max Planck less than a week after his letter to Lorentz. “It all came out exactly as one would have it.”

But using real numbers to simulate complex quantum mechanics is a clunky and abstract exercise, and Schrödinger recognized that his all-real equation was too cumbersome for daily use. Within a year he was describing wave functions as complex, just as physicists think of them today.

“Anybody wanting to get work done uses the complex description,” said Matthew McKague, a quantum computer scientist at the Queensland University of Technology in Australia.

Yet the real formulation of quantum mechanics has lingered as evidence that the complex version is merely optional. Teams including Vértesi and McKague, for instance, showed in 2008 and 2009 that—without an *i* in sight—they could perfectly predict the outcome of a famous quantum physics experiment known as the Bell test.

The new research, which was posted on the scientific preprint server Arxiv.org in January, finds that those earlier Bell test proposals just didn’t go far enough to break the real-number version of quantum physics. It proposes a more intricate Bell experiment that seems to demand complex numbers.

The earlier research led people to conclude that “in quantum theory complex numbers are only convenient, but not necessary,” wrote the authors, who include Marc-Olivier Renou of the Institute of Photonic Sciences in Spain and Nicolas Gisin of the University of Geneva. “Here we prove this conclusion wrong.”

The group declined to discuss their paper publicly because it is still under peer review.

The Bell test demonstrates that pairs of far-apart particles can share information in a single “entangled” state. If a quarter in Maine could become entangled with one in Oregon, for instance, repeated tosses would show that whenever one coin landed on heads, its distant partner would, bizarrely, show tails. Similarly, in the standard Bell test experiment, entangled particles are sent to two physicists, nicknamed Alice and Bob. They measure the particles and, upon comparing measurements, find that the results are correlated in a way that can’t be explained unless information is shared between the particles.

The upgraded experiment adds a second source of particle pairs. One pair goes to Alice and Bob. The second pair, originating from a different place, goes to Bob and a third party, Charlie. In quantum mechanics with complex numbers, the particles Alice and Charlie receive don’t need to be entangled with each other.

No real-number description, however, can replicate the pattern of correlations that the three physicists will measure. The new paper shows that treating the system as real requires introducing extra information that usually resides in the imaginary part of the wave function. Alice’s, Bob’s, and Charlie’s particles must all share this information in order to reproduce the same correlations as standard quantum mechanics. And the only way to accommodate this sharing is for all of their particles to be entangled with one another.

In the previous incarnations of the Bell test, Alice and Bob’s electrons came from a single source, so the extra information they had to carry in the real-number description wasn’t a problem. But in the two-source Bell test where Alice’s and Charlie’s particles come from independent sources, the fictitious three-party entanglement doesn’t make physical sense.

Even without recruiting an Alice, a Bob, and a Charlie to actually perform the experiment that the new paper imagines, most researchers feel extremely confident that standard quantum mechanics is correct and that the experiment would therefore find the expected correlations. If so, then real numbers alone cannot fully describe nature.

“The paper in fact establishes that there are genuine, complex quantum systems,” said Valter Moretti, a mathematical physicist at the University of Trento in Italy. “This result is quite unexpected to me.”

Nevertheless, odds are that the experiment will happen someday. It wouldn’t be simple, but no technical obstacles exist. And a deeper understanding of the behavior of more complicated quantum networks will grow only more relevant as researchers continue to link numerous Alices, Bobs and Charlies over emerging quantum internets.

“We therefore trust that a disproof of real quantum physics will arrive in a near future,” the authors wrote.

*Original story* *reprinted with permission from* Quanta Magazine, *an editorially independent publication of the* *Simons Foundation* *whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and*

#### Subscribe to the newsletter news

We hate SPAM and promise to keep your email address safe