Connect with us

Its123.com

Cryptocurrency Bitcoin What If Doctors Are Always Watching, but Never There?


Crypto

Cryptocurrency Bitcoin What If Doctors Are Always Watching, but Never There?

Every doctor is trailed by ghosts. One of my youngest was a 7-year-old boy I’ll call Oliver. He had an upset stomach, and his mother booked an early morning appointment with their family doctor so that he could still make it in time for class. He seemed to have a routine tummy bug, but something…

Cryptocurrency  Bitcoin What If Doctors Are Always Watching, but Never There?

Cryptocurrency Bitcoin

Every doctor is trailed by ghosts. One of my youngest was a 7-year-old boy I’ll call Oliver. He had an upset stomach, and his mother booked an early morning appointment with their family doctor so that he could still make it in time for class. He seemed to have a routine tummy bug, but something about Oliver’s appearance made his family doctor call the hospital where I was working at the time. He asked if we could monitor the boy for a few hours. We found him a bed.

Oliver looked furtively at his mother as I stuck a needle in his arm to draw blood and hang up a drip. His initial blood readings were not bad at all, so we focused on other, sicker, children, and the nurses popped in to take routine observations every four hours. In modern wards, to prevent infection and protect privacy, patients like Oliver, who might be contagious, are put in isolation rooms—out of sight—with their observation chart hooked on plastic rails beside the door.

We first noticed something was wrong when his chart showed the dreaded “seagull sign.” When plotted on the same graph using the same scale, systolic blood pressure (marked on charts with a birdlike chevron) should, in healthy people, remain above the dot that signifies the pulse rate. Nurses are taught a simple rule: When this pattern reverses—when it looks like the poop is landing on the bird—it is a sign that the shit is about to hit the fan.

By that time it was already too late. When I drew blood a second time at around 6 pm, Oliver seemed tired and gray and was unflustered by the needle. I ran down the corridor to process the sample; the blood-gas machine showed that his blood was becoming acidic—an ominous sign. He was even sicker than he looked.

Of the millions of children who suffer with viral infections of the gut every year, very few experience serious complications. But Oliver was one of those who did. He had developed myocarditis, a meaty inflammation of the heart. Despite the frantic flurry of activity of the next few hours—the bedside chest X-ray that showed his heart was blimping up like a balloon, the high-flow oxygen mask we muzzled him with, the medicine we trickled into his veins—Oliver’s heart beat more and more stiffly. His illness was so serious that it was decided he should be transferred to the nearest specialist hospital. He was wheeled out of the ward to the intensive care unit, to wait until the ambulance arrived. It was there that Oliver’s heart stopped. Despite all the efforts to revive him, Oliver died.

One week later, the entire team who’d been involved in Oliver’s care gathered around a table in a cramped, windowless room to debrief. The child’s death left us shaken, with one question hanging like a dagger in the room: What could we have done to notice his decline sooner—while he was still just edging toward the precipice, and not after he had started the steep, downward slide?

This question stayed with me for years, as I started seeing patients in my own clinic. My desire to find better ways of really seeing what was happening with them was sharpened by the coronavirus pandemic. I wondered: How can we safely assess and monitor all these patients we now consult remotely, in their own homes? I set out to discover ways that technology might help me work more safely in the community, which led to a new piece of equipment that was initially developed for the Formula One racing circuit, and which is currently being piloted in intensive care to see if it picks up early signs of decline in children.

This new system, which continually monitors and collects patient data, has recently gone wireless. It is being tested on patients in a hospital in Birmingham, England, but it and similar remote systems might be used in patients’ homes in the future. The more I read on the subject, the more I realized that remote patient monitoring could change medicine radically: hastening medical responses and improving health outcomes; remapping the zones of health care; but also perhaps transforming how doctors like me think, in ways we might not so readily welcome.

Close observation of patients has been a universal duty of all doctors throughout time. For millennia, medical practitioners used their senses to assess a patient’s condition. Even now, we doctors are trained to recognize the hard-candy breath of sick diabetics, the glass bottle clonking sound of an obstructed bowel, and the cold, clammy feel of skin when a patient’s circulation is shutting down. But the systematic recording of numerical observations is a surprisingly recent phenomenon.

In the late 1800s, instruments were designed to measure a standardized set of health indicators. These are the four main vital signs: heart rate, respiratory rate, temperature, and blood pressure. It was just before the turn of the last century that these vital signs, also known as observations, were first documented systematically. By World War I they were used routinely. Studies of these charts revealed that people basically never died when these vital signs were normal; hearts don’t stop out of the blue. But for the better part of a century, the art of interpreting these so-called obs charts was, to the untrained, as mysterious as reading tea leaves.

Then, in 1997, a team based at the James Paget University Hospital, in Norfolk, England, developed an early warning system with which a nurse could quickly turn vital signs into a score. If the score surpassed a threshold, it was a signal to call for a doctor’s assistance. Such systems were steadily rolled out for adult patients, but it was not clear if they would work in children, whose physiological responses to illness are different from those of adults.

Dig Deeper With Our Longreads Newsletter

Sign up to get our best longform features, investigations, and thought-provoking essays, in your inbox every Sunday.

Top News

Popular Posts

To Top